

ONVERGENCE CONFERENCES

2018年7月11-13日上海 2018年7月11-13日上海

基于双向流固耦合技术的薄铝板变形分析

王骁晓 黄志新 安世亚太

© 2018 ANSYS, Inc.

July 11-13,2018

项目背景概述

技术路线与技术难点 计算边界条件设置 双向流固耦合计算结果

破坏判据与破坏时间

总结

© 2018 ANSYS, Inc.

项目背景概述

- 项目背景概述

- 铝板上下由卡具固定,放置于风洞中
- 内表面中心区域接受高功率激光辐照
- -物理问题描述
 - 受到激光辐照后约束状态的铝板产生热应力与热变形
 - 持续辐照后铝板鼓胀并萌生裂纹
 - 最终在高速气流作用下撕裂破坏

项目背景概述

- 项目关注焦点——热变形导致宏观断裂

- 重点关注切向气流环境下受辐照铝板的温度、变形、应力等物理量随时间的响应,并综合考虑加热过程中材料高温强度性能劣化以及热应力承载问题,最终确定铝板内表面中心点初始起裂破坏时间。
- 既关注"点",又关注"面"

e 2010 ANJ15, IIIC.	C	20	18	AN	SYS,	Inc.
---------------------	---	----	----	----	------	------

项目背景概述 技术路线与技术难点 计算边界条件设置 双向流固耦合计算结果 破坏判据与破坏时间 总结

© 2018 ANSYS, Inc.

July 11-13,2018

技术路线与技术难点

- -利用双向流固耦合技术同时求解流-固-热三个物理场
 - 流体域内对流换热
 - 固体域内导热
 - 空间内辐射换热
 - 结构的几何、材料非线性

技术路线与技术难点

- 获取铝板的时程计算结果
 - 铝板表面压力场
 - 铝板内部温度场
 - 位移场
 - 应力场
- 根据计算结果与强度判据确定破坏时刻

NNSYS

技术路线与技术难点

- 技术难点与对应解决方案 常规技术难点
 - 双向流固耦合技术——实时传递数据——system coupling

	А	В		А	В
1	Property	Value	1	Property	Value
2	E Source		2	E Source	
3	Participant	Fluent	3	Participant	Transient Structural
4	Region	fsi-side	4	Region	Fluid Solid side
5	Variable	heatflow	5	Variable	Temperature
6	⊟ Target		6	⊟ Target	
7	Participant	Transient Structural	7	Participant	Fluent
8	Region	Fluid Solid side	8	Region	fsi-side
9	Variable	Heat Flow	9	Variable	temperature

(a)传热数据传递

	A	В		А	В
1	Property	Value	1	Property	Value
2	E Source		2	E Source	
3	Participant	Transient Structural	3	Participant	Fluent
4	Region	Fluid Solid side	4	Region	fsi-side
5	Variable	Incremental Displacement	5	Variable	force
6	😑 Target		6	🖃 Target	
7	Participant	Fluent	7	Participant	Transient Structural
8	Region	fsi-side	8	Region	Fluid Solid side
9	Variable	displacement	9	Variable	Force

(b)力学数据传递

© 2018 ANSYS, Inc.

技术路线与技术难点

- 技术难点与对应解决方案

常规技术难点

完全瞬态分析——时间子步无
 关性验证——计算量与计算精
 度平衡

	А	В
1	Property	Value
2	Analysis Type	Transient
3	Initialization Controls	
4	Coupling Initialization	Program Controlled
5	 Duration Controls 	
6	Duration Defined By	End Time
7	End Time [s]	5
8	 Step Controls 	
9	Step Size [s]	0.01
10	Minimum Iterations	1
11	Maximum Iterations	5

技术路线与技术难点

纯六面体网格 Dynamic Mesh Mesh Method-Smoothing流 耦合面-System Coupling 耦合面上下游底面-Deforming

- 技术难点与对应解决方案
- 常规技术难点
 - 动网格技术

2	Dynamic Mesh Zone
Zone Names	Dynamic Mesh Zones
fsi-side	→ fsi-side
- Type O Stationary D Picid P. L.	fsi-source wall-in-bm
O Deforming	wall-out-bm
 User-Defined System Coupling 	
 Stationary Rigid Body Deforming User-Defined System Coupling 	wall-in-bm wall-out-bm

© 2018 ANSYS, Inc.

July 11-13,2018

技术路线与技术难点

- 技术难点与对应解决方案

常规技术难点

- Solid226耦合场单元使用技术——命令流调用——
 Workbench与经典界面联合 仿真
- 结构计算涉及材料非线性与 几何非线性双重行为——控 制收敛——牛顿-拉普森迭代 技术

技术路线与技术难点

- 技术难点与对应解决方案
- 特殊技术难点
 - 热源加载于哪个物理域? ——为保证计算准确, 热源加载于结构场
 - ・如何提出破坏判断依据? ——根据裂纹破坏形式,选择第一强度理论 $\sigma_1 \leq \sigma_b$

项目背景概述 技术路线与技术难点 计算边界条件设置 双向流固耦合计算结果 破坏判据与破坏时间 总结

© 2018 ANSYS, Inc.

计算边界条件设置

- 流体计算域边界条件设置
 - 流场计算域取一矩形截面长直 管道
 - 高速气流考虑为理想气体
 - 薄铝板内表面一侧划分出边界 层网格
 - 湍流模型采用SST k-ω模型
 - 流场计算辐射模型选用P1模型

计算边界条件设置

- 固体计算域边界条件设置
 - 铝板上下边界为固定约束
 - 左右螺钉孔处约束远端点的平动自由
 度、放开转动自由度
 - 铝板内表面分割出80mm×52mm区域 简 施加激光热源
 - 铝板内表面为双向流固耦合面
 - 铝板外表面设置对流换热及辐射热边 界
 - 铝板材料本构模型为双线性等向强化

项目背景概述 技术路线与技术难点 计算边界条件设置 双向流固耦合计算结果 破坏判据与破坏时间

总结

© 2018 ANSYS, Inc.

双向流固耦合计算结果-温度场

- 典型时刻下铝板的温度场
- 选取加热过程中典型时刻铝板瞬态温度场

C	201	18	AN	SY	S,	Inc.
---	-----	----	----	----	----	------

July 11-13,2018

双向流固耦合计算结果-温度场

双向流固耦合计算结果-温度场

- 温度计算结果分析
 - 在激光辐照的作用下, 铝板内表面接受辐照区域的 温度从初始时刻的20℃快速升高
 - 0.5s时最高温度已经达到112℃, 1s时已达188℃
 - 由于铝板的比热随温度增大,所以在激光辐照的前 期,铝板升温较快,后期升温逐渐缓慢
 - 激光辐照到5s时,铝板内表面最高温度为477℃
 - 5s之后停止辐照加热,温度逐渐下降
 - 在气流的冷却作用下,到第8s时,铝板的最高温度 降到252℃。

500 ·

400

300

200

100 ·

0

Temperature/°C

双向流固耦合计算结果-压力场

• 典型时刻下铝板壁面压力场分布

双向流固耦合计算结果-压力场

- 壁面压力计算结果分析
 - 铝板内表面由于向上凸起变形,气流的流通面积减小,产
 生了明显的负高压区
 - 压力最大值始终出现在铝板内表面中心位置,呈椭圆形向
 四周逐渐减小
 - 在与上下游壁面的连接处,由于有向上下两侧的不规则扭曲,产生了两个明显的负低压区,其他区域的压力值平缓过度
 - 在0-5s之间,压力值以每秒几百帕的速度逐渐增加
 - 6-8s之间,由于变形量减小,压力值以每秒几百帕的速度 逐渐降低。

双向流固耦合计算结果-变形

双向流固耦合计算结果-变形

- 测点时程变形曲线
 - •加热0.1s时最大位移约为0.82mm
 - 0.5s时约为2.2mm
 - 1s时约为3.1mm
 - •5s时达到最大,约为5.3mm

仿真计算与实验测试吻合很好

- 实际加热过程中,温度升高到一定程度铝板会产生裂纹,模拟过程忽略裂纹的产生。

双向流固耦合计算结果-应力

- 典型时刻下铝板MISES应力场

0.1s时刻薄铝板应力分布 1s时刻薄铝板应力分布 3s时刻薄铝板应力分布

随着铝板温度升高,材料软化,其强度指标下降, 中心位置的塑性变形缓解了部分高应力,使中心位置最大应力下降

© 2018 ANSYS, Inc.

July 11-13,2018

双向流固耦合计算结果-应力

- 应力计算结果分析
 - 铝板受约束位置出现了应力集中情况,产生了局部高应力;
 - 约束处的局部高应力并不会对铝板结构强度产生明显影响;
 - 相比较而言,铝板中心位置虽然应力水平较四周更低,但该位置温度随着辐照加热快速升高,当该位置温度达到400℃后,材料强度性能明显劣化,其抗拉强度仅为67MPa,此时,铝板表层材料已没有强度储备,强度破坏随之发生。

项目背景概述 技术路线与技术难点 计算边界条件设置 双向流固耦合计算结果 破坏判据与破坏时间

总结

© 2018 ANSYS, Inc.

破坏判据与破坏时间

-破坏机理

- 铝板表面将在最大主应力方向上形成微裂纹,在拉应力的作用下裂纹 会迅速沿着高度与厚度方向进行扩展,最终形成贯穿铝板壁厚的宏观 裂纹。
- •结构计算基于隐式方法,不能直接计算材料破坏行为

© 2018 ANSYS, Inc.

破坏判据与破坏时间

- -破坏判断方法
 - 采用第一强度理论,取内表面中心点处材料达到强度破坏的时刻作为结构破坏时间

© 2018 ANSYS, Inc.

破坏判据与破坏时间

- -破坏时间确定
 - 板表面材料初始破坏对应的时间点由其最大主应力控制,大约发生在加热过程的第2.49s。
 - 微裂纹的尺度肉眼不可见,从微裂纹扩展到肉眼可见的宏观裂纹所需的时间大概为材料断裂过程总时间的三分之二,所以裂纹产生的时刻与实验观测值有1s左右偏差。

项目背景概述 技术路线与技术难点 计算边界条件设置 双向流固耦合计算结果 破坏判据与破坏时间 <u>总结</u>

© 2018 ANSYS, Inc.

总结

- 技术难点

- •利用双向流固耦合技术同时求解流-固-热三物理场瞬态换热问题;
- 考虑瞬态铝板材料非线性与结构几何非线性问题;
- 结合实验中铝板失效形式,提出基于数值模拟的破坏判断方法。

- 误差来源

- 材料本构模型基于双线性假设,与真实材料有偏差;
- 实验所用的热电偶通过焊接融化在铝板背表面,表面涂有高温胶,一定温度下会脱落;
- 实验时激光辐照过程中漆层颜色、形貌发生变化,对入射激光的反射率也会有一定的改变;
- 结构计算采用隐式求解,无法准确模拟裂纹扩展以及断裂过程。

ONVERGENCE CONFERENCES

2018年7月11-13日上海 2018年7月11-13日上海

© 2018 ANSYS, Inc.

July 11-13,2018